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1. Stellar Data

In this section, we provide further details on the curation

process of Stellar, our proposed dataset for grounding and

evaluating modern text-to-image (T2I) generation methods.

Additionally, we provide and analyze both quantitatively

and qualitatively the complementarity and the similarities

among Stellar-H and Stellar-T , highlighting the particular-

ities of each prompt dataset.

All introduced datasets, our evaluation metrics and net-

work, StellarNet, will be made publicly available, along

with a formal competition, fostering progress and compar-

isons for newly introduced T2I personalized methods.

1.1. Stellar­H

In our effort to create a long-standing benchmark for

human-centric personalized image generation, we recog-

nized the importance of acquiring realistic and natural

prompts for this task, i.e., similar to what we can expect

a real non-expert user to provide to a powerful personalized

T2I generation system, which is is not bound by transient

technological shortcoming [15]. E.g., it does not require in-

tricate prompt-engineering to deliver accurately grounded

outputs. To promote such open-ended, but also, simple (nat-

ural) prompt curation, we initiated an Amazon Mechanical

Turk (AMT) study with the aim of collecting a total of 10k

prompts from multiple English-speaking annotators.

As illustrated in Fig. 1, participants of our AMT study

were instructed to provide three prompts, at a time, assum-

ing access to a system capable of generating arbitrary and

imaginative images of themselves. Importantly, we guided

participants to avoid prompts that sought to explicitly alter

their physical attributes (e.g., age), request specific clothing

or accessories (e.g., jewelry), or prompts that included other

individuals, such as family members for which a single-

image typical T2I system, is impossible to visually com-

prehend without additional information. Besides the above

thee specific constraints, the annotators where free to de-

scribe arbitrary imaginative scenarios in natural language.

This effort resulted in the collection of 3376 submis-

sions, each containing three prompts, from a total of 123

unique users. Importantly, in our study could only partic-

ipate users with an excellent track-record in terms of hav-

ing successfully completed (each) more than 5,000 thou-

sand submissions in other visiolinguistic tasks with error-

rates of less than 0.5%. In the end, upon applying a

manually-curated content-filter to exclude potentially sensi-

tive themes (e.g., violence or nudes), and performing min-

imal post-processing, we obtained the final dataset of 10k
prompts, denoted as Stellar-H. Detailed statistics regard-

ing the length of its prompts and the distribution of com-

mon parts-of-speech and overall token-usage can be found

in Tab. 3 - left.

1.2. Stellar­T

For the more standardized Stellar-T , we drew inspiration

from the imaginative prompts of Stellar-H, while imposing

vocabulary constraints. This action aims to enhance the pre-

cision in evaluating personalized models, particularly their

ability to faithfully represent the objects and relationships

described in the prompts.

Our first step involved a detailed manual analy-

sis of Stellar-H. This examination revealed that the

majority of prompts conform to a flexible template:

"S* [as a person in uniform] [engaging

in an activity] [at a location] [at a

specific time and under certain weather

conditions]", with each bracketed component being

optional.

Next, we extracted nouns and verbs from these prompts

as proxies for objects and actions. Our analysis focused on

the frequency of these elements, leading to the incorpora-

tion of the most recurrent ones into Stellar-T . For related

object groups, like food, we adopted their broader class cat-

egories.

To diversify Stellar-T , we enlisted ChatGPT’s aid in

identifying the top 20 most recognizable items within these

categories. These recommendations were largely integrated

into our dataset enriching Stellar-T with a wide range of ob-

jects. Examples of the final object categories from Stellar-T
can be found in Tab. 2.

Our analysis of verbs led to the development of the ac-
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Figure 1. Instructions given to annotators for collecting

prompts in natural language. These are the mandatory instruc-

tions AMT annotators had to follow in order to crowd-source

Stellar-H. The partaking annotators were selected from a pool of

annotators with excellent track-record in similar tasks, and where

able to communicate directly with the authors for any follow-up

questions. Their work resulted in a semantically rich and imagina-

tive dataset of 10k human-generated prompts.

tion templates used in Stellar-T , such as ”eating [food]”,

and ”driving [vehicle]”. We categorized similar actions into

clusters (e.g., ”doing sports”) and, like in previous steps,

utilized ChatGPT’s assistance to populate these categories

with relevant actions.

For the [person in uniform] component, we

merged prevalent themes from Stellar-H with sug-

gestions from ChatGPT, resulting in a comprehensive

list of people in uniform. For location elements,

Table 1. Stellar-H examples and their nearest neighbors in

Stellar-T according to the ST5 embedding space. In each group

of prompts, the top prompt (in purple ) is randomly chosen from

Stellar-H, while the 5 following prompts (in ) are its 5 nearest

neighbors in Stellar-T in the Sentence-T5 [10] embedding space.

We observe that frequently, Stellar-T prompts offer dense but also

substantial variations of Stellar-H (e.g., giving a speech next to the

Statue of Liberty) while preserving critical semantics (top group,

all actions are grounded on the Statue of Liberty).

Stellar

S∗ in front of the Statue of Liberty

⊢ S∗ at the Statue of Liberty

⊢ S∗ running in front of the Statue of Liberty

⊢ S∗ giving a speech next to the Statue of Liberty

⊢ S∗ wearing glasses at the Statue of Liberty

⊢ S∗ dining near the Statue of Liberty

S∗ bungee jumping off a hot air balloon at sunrise

⊢ S∗ bungee jumping in the sunrise

⊢ S∗ bungee jumping in the morning

⊢ S∗ sky diving in the sunrise

⊢ S∗ bungee jumping in an air balloon

⊢ S∗ bungee jumping on a sunny day

S∗ making a rice dinner

⊢ S∗ cooking rice

⊢ S∗ holding rice

⊢ S∗ cooking rice in the morning

⊢ S∗ eating rice

⊢ S∗ as an admiral cooking rice

S∗ holding a bear on a leash

⊢ S∗ taking a bear for a walk

⊢ S∗ taking a bear for a walk in the snow

⊢ S∗ with a bear

⊢ S∗ next to a bear

⊢ S∗ taking a tiger for a walk

S∗ climbing a rock wall as a nurse

⊢ S∗ as a nurse rock climbing

⊢ S∗ as a nurse climbing a mountain

⊢ S∗ as a nurse bungee jumping

⊢ S∗ as a nurse weightlifting

⊢ S∗ as a nurse running

we expanded upon Stellar-H’s common locales, in-

corporating a list of renowned cities, countries, and

monuments suggested by ChatGPT. Additionally, for

the [at a specific time and under certain

weather conditions] section, we included various

times of day (e.g., morning, sunset), seasons (e.g., spring),

and weather phenomena (e.g., fog).

Finally, to improve the diversity of our template’s ac-

tions, locations, and objects we received feedback from in-

2



Food Famous Landmark Person in Uniform Sports Famous Car Brand Nature Loc.

pizza Golden Gate Bridge clown basketball Bugatti desert

steak Mount Rushmore businessman tennis Rolls-Royce forest

sushi Victoria Falls doctor baseball Lamborghini mountain

dinner Niagara Falls nurse soccer Ferrari sea

pasta Buckingham Palace cop golf Aston Martin lake

noodles La Sagrada Familia policeman volleyball Bentley river

corn Grand Palace firefighter rugby Porsche grass

popcorn Blue Domes of Oia fireman football McLaren beach

croissant Mount Fuji soldier ice hockey Pagani volcano

ice cream Sydney Opera captain table tennis Koenigsegg fire

soup White House admiral badminton Maserati Sports

eggs Parthenon scientist cricket Mercedes-Benz basketball

rice Eiffel tower knight Music Instr. Lexus tennis

potato chips Pisa tower DJ guitar Audi baseball

tacos Pyramids of Giza Egyptian pharaoh piano Jaguar soccer

hamburger Great Pyramid of Giza king cello Alfa Romeo golf

cheeseburger Statue of Liberty emperor violin Tesla volleyball

curry Taj Mahal astronaut flute Lotus rugby

paella Great Wall Of China cowboy bass Zenvo football

falafel Petra of Jordan wizard horn Rimac ice hockey

goulash Colosseum pilot drums Board Games table tennis

pad thai Machu Picchu President harp chess badminton

kebab Stonehenge mandolin cards cricket

souvlaki Acropolis trumpet poker

hot dog Brandenburg Gate oboe monopoly

cake saxophone uno

Table 2. Example categories and associated objects explicitly annotated in Stellar-T . The shown categories are coupled with our

sentence-producing templates to sample relevant objects (per category) and construct the candidate prompts covering Stellar-T . Applying

a template-based generation promotes a robust and fine-grained evaluation of personalization T2I systems given the implicit rich annotation

we can extract in terms of prompt-grounding objects and their interaction with the subject human. For presentation purposes, we showcase

categories with a relatively small number of underlying objects.

Figure 2. Wordcloud of nouns in Stellar- H. The size of each word is proportional to its relative frequency in the underlying corpus. For

best viewing results please use a digital version and zoom in.

ternal teams in our company.

Filtering to obtain the final 10k prompts set. This initial

procedure generated approximately 177k prompts, a num-

ber that can be further scaled up by incorporating additional

objects, locations, and actions into the templates. To refine

this extensive collection down to a more manageable set of

10k prompts, we first employed a filtering step. This in-

volved discarding one-third of the prompts based on their

semantic dissimilarity compared to those in Stellar-H. Sub-

sequently, to ensure the remaining set was semantically di-

verse we applied a furthest point sampling technique. The
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Table 3. Lexical analysis of Stellar-H and Stellar-T . We report

the number of prompts, unique tokens, and machine-generated

statistics based on Part Of Speech tagging [1]. For each cate-

gory, we report the total elements (TT), the average number of

elements per prompt (PP), and the average number of unique el-

ements per coupled image (PI), in either dataset – each image is

assigned 50 prompts. Note how, despite the higher diversity of

Stellar-H shown in TT, the PI and PP of the two subsets are very

similar, underscoring a similar complexity and diversity on each

image-prompt example.

Statistic
Stellar-H Stellar-T

TT PP PI TT PP PI

prompts 10k 1 50 10k 1 50
tokens 6.4k 7.7 395.0 533 7.1 354.9
nouns 4.5k 3.1 96.4 368 2.7 64.4
verbs 1.6k 1.3 48.9 94 1.1 30.4

adjectives 827 0.3 13.8 59 0.0 6.38
adpositions 98 1.3 17.2 33 1.1 10.5

resulting collection of prompts is Stellar-T .

Similarities and Differences of Stellar-H and Stellar-T .

Our standardization efforts are reflected in the object and

verb statistics of the two Stellar datasets, as detailed in Tab.

3. A key observation is the similarity in the average num-

ber of part-of-speech (POS) elements per prompt and im-

age. These statistics demonstrate that we have successfully

maintained comparable levels of complexity and diversity

in the image-prompt pairings across both datasets. Addi-

tionally, an aspect of our standardization process is the sig-

nificant reduction of unnecessary modifiers, highlighted by

the near-zero count of adjectives in Stellar-T .

Moreover, when merging the objects from popular ob-

ject detection datasets like Open Images [7], COCO [2] and

Objects365 [14], we observe that these objects cover 2.6x

higher percentage of the vocabulary in Stellar-T compared

to Stellar-H (37% vs. 14%). A similar trend is observed in

the relationships within these datasets when contrasted with

VG200 [17] and VRD [9] datasets (35% vs. 2%).

Despite these differences, both qualitative (Fig. 3) and

quantitative (Tab. 4) analyses suggest a high degree of

semantic similarity between Stellar-T and Stellar-H with

Stellar-T ’s advantage being on the capability for more ro-

bust evaluation of a personalization T2I system as we dis-

cuss in Sec. 1.2. For comparison purposes, we include

COCO [2], a commonly used captioning dataset. For these

comparisons, we employed a tailored subset of COCO, de-

noted as COCO∗, which includes only human-centric con-

tent. We analyzed 10k samples from each dataset using

Sentence T5 (ST5) [10] embeddings. Qualitatively, these

embeddings are visualized in the t-SNE space (Fig. 3).

Figure 3. Visually contrasting the semantic proximity be-

tween Stellar-H, Stellar-T and COCO∗. Here, we project and

visualize ST5 embeddings projected in two dimensions via t-

SNE for equally-sized subsampled prompts of the aforementioned

datasets. We observe a big overlap (clustering) between Stellar-

H and Stellar-T indicative of their semantic proximity. On the

other hand, there is a distinct separation of both datasets from

COCO∗, highlighting their uniqueness from such objective cap-

tions. (COCO∗ is a subset of captions of COCO that explicitly

refer to people, with more than 100k caption examples).

Table 4. Quantitative semantic similarity of the datasets.

This analysis showcases the semantic similarities between Stellar-

T and Stellar-H, and their distinction from existing captioning

datasets such as COCO. A Gaussian Mixture Model (GMM)

trained on Sentence-T5 embeddings from each prompt sample in

Stellar-H was used to calculate the average log-likelihood of the

embeddings from Stellar-T and COCO∗ being part of the Stellar-

H distribution. Despite Stellar-T being more constrained in scope

than Stellar-H, the data reveals a notable semantic alignment be-

tween them. In contrast, COCO∗ though richer in prompt quantity,

exhibits a different distribution from that of Stellar. This distinc-

tion underscores the unique semantic composition of the Stellar

datasets.

Dataset Stellar-H Stellar-T COCO∗

Stellar-H 1869 1858 1765

To quantitatively compare the datasets, we employ an

optimal Gaussian Mixture Model (GMM), as determined

by the BIC score, trained on the ST5 embeddings from

each prompt of Stellar-H. By calculating the average log-

likelihood of the embeddings from Stellar-T and COCO∗
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being part of this distribution we get a quantitative measure

of the similarity of these datasets (Tab. 4). Underscoring

the semantic similarity between Stellar-H and Stellar-T is

also the evaluation of the ablated methods (Sec. 6) in both

datasets. Notably, comparing Tab. 5 and Tab. 3, we observe

that the metrics are nearly identical when evaluating either

of the subsets of Stellar.

Finally, we estimated the percentage of Stellar-H
prompts that can be covered by the templates in Stellar-T .

Specifically, we sampled 200 random prompts from Stellar-

H and manually evaluated if there was a specific template

covering each of them. For example ”S∗ watching a bas-

ketball match in London” can be effectively captured by

the template ”S∗ watching [event] in [city]”. However, ”S∗

kicking a football with their elbow” can not be effectively

captured by any templates in Stellar-T , even the relatively

similar ”S∗ kicking [kickable objects]” as it can not cap-

ture the semantic nuance the modifier ”with their elbow”.

With this in mind, we find that we can cover a least 75% of

Stellar-H with templates from Stellar-T .

The outcomes of both qualitative and quantitative

analyses consistently indicate that the two subsets of

Stellar—Stellar-H and Stellar-T —exhibit a high degree of

semantic similarity. In contrast, they are markedly distinct

from the COCO∗ dataset, underscoring the unique nature of

the Stellar dataset in comparison to traditional captioning

datasets.

1.3. Stellar­Images

The image portion of the STELLAR dataset contains a sub-

sample of the CelebAMask-HQ’s test set. CelebAMask-HQ

contains close-up images of celebrities with several pictures

per subject and annotations on characteristics specific to the

image, i.e.,whether the subject is a male or female. We con-

struct our image dataset by first employing a state-of-the-

art (SoTA) face detector [3] to extract the bounding box of

each face. Our criteria for inclusion required that the de-

tected face must cover at least 20% of the image area and

that the model’s confidence level in the detection must be no

less than 99%. Furthermore, we excluded any images where

their identity in the original CelebAMask had inconsistent

gender annotation for the same person (e.g., a Celeb identity

marked as female in one instance and male in another).

Additionally, we eliminated identities represented by fewer

than two images within the dataset. We then randomly se-

lected 200 subjects and ensured diversity by selecting a bal-

anced gender (woman/man) and age (old/young) using

the annotations in CelebA. From each chosen identity, only

two images were randomly selected for inclusion. Conse-

quently, this process resulted in a collection of 400 high-

quality human face images representing 200 unique identi-

ties.

Similarly, we applied this procedure to the validation set

of CelebAMask-HQ, selecting another set of 200 unique

identities with two images each, thereby forming the val-

idation split of our dataset. We use this split for model se-

lection and validation purposes.

2. Details on Evaluation Metrics

2.1. Stellar­T usefulness to our Metrics

A simplified visual representation of our proposed metrics

is provided in Fig. 4. This illustration also underscores

the significance of Stellar-T as its annotations are necessary

for the calculation of the object-centric metrics GOA and

RFS. Additionally, the SIS score necessitates the use of

additional images of the input identity. This requirement is

conveniently met by the Stellar dataset, thereby reinforcing

its utility.

2.2. Metrics Correlation

The extensive correlation matrix depicted in Fig. 5 reveals

insightful patterns among various existing and newly intro-

duced metrics in personalized image generation evaluation.

Two distinct clusters emerge from this analysis: one repre-

senting text-to-image evaluation metrics ( ) and the other

encompassing our identity-based metrics ( ).

Focusing on the text-to-image metrics, highlighted in

Fig. 5 with a circle, a notable high correlation is

observed among these metrics. For instance, the Pearson

correlation coefficient ρ reaches 0.6 between CLIPT and

HPSv2. Interestingly, these metrics also exhibit a strong

correlation with GOA, our metric designed to assess object

faithfulness between the prompt and the generated image.

This trend suggests that traditional text-to-image metrics

predominantly emphasize the faithfulness of representing

objects rather than the relationships between them. This

observation further underscores the need for specialized re-

lation metrics, such as RFS. As indicated in the figure, RFS

introduces a distinct evaluative dimension, showing mini-

mal correlation with other metrics and thereby providing a

unique perspective in the assessment of image generation

quality.

In the segment of identity-based metrics (Fig. 5 -

), our three proposed metrics—IPS, APS, and SIS—form

a tightly correlated cluster. Despite their high inter-

correlations, these metrics exhibit minimal correlation with

other metrics, reinforcing their significance in introducing

new evaluative dimensions for personalized text-to-image

generation. It is crucial to note, however, that the strong

correlations observed among IPS, APS, and SIS should

not be misconstrued as redundancy. Each metric addresses

distinct aspects of identity representation: SIS focuses on

the consistency of identity generation, while APS provides

a fine-grained assessment of identity preservation, comple-

menting the more holistic approach of IPS. This comple-
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Figure 4. Graphical depiction of our proposed evaluating pipeline and metrics for personalized T2I generations. The abstract

illustration underscores the significance of Stellar-T as its annotations are necessary for the calculation of the object-centric metrics GOA

and RFS (left-most rectangle). Moreover, the SIS score necessitates the use of additional images for evaluating the output’s fidelity to the

input identity, and the APS requires specialized physical/facial attributes (right-most rectangle). These requirements are conveniently met

by Stellar’s image dataset, thereby reinforcing its utility.

mentarity is particularly evident in cases where IPS might

not capture subtle nuances, as seen in the 2nd row of Fig. 3.

2.3. Human Evaluation

To ground the assessment of personalized image generation

models in human perception and to quantitatively determine

the correlation of our proposed metrics with human judg-

ment, we conducted two human-centered studies with a to-

tal of ∼2.5k. The methodologies and findings of these stud-

ies are presented in Sec. 6.1. Here we provide additional

information about each of the studies.

Overall Study. In our Overall study, participants were

presented with four different outputs generated using four

distinct ablation methods: StellarNet, ELITE∗, Dream-

booth, and Textual Inversion. They were asked to select

the one they preferred most overall, as shown in Fig. 6.

This preference was based on how well each output simul-

taneously adhered to the given prompt and accurately rep-

resented the input image. In total, we sent evaluators 500
input-output pairs, gathering 1.5k responses. Upon analyz-

ing these responses, we retained those input-output pairs

where a majority consensus was reached, amounting to 95%
of the total queries. This high rate of consensus highlights

a significant agreement among human evaluators in their

preferences.

The results showed a notable 78% preference for Stel-

larNet. More crucially, there was a significant Kendall-τ

correlation score of 0.45 between human judgment and the

IPS score, the highest correlation observed among all the

ablated metrics. This outcome underscores the paramount

importance of input identity representation in aligning with

human evaluators’ preferences, provided there is at least a

minimal alignment with the prompt.

Second Study. The focus of our second study was to as-

sess the effectiveness of GOA and RFS in independently

evaluating the faithfulness of representing objects and their

relations in generated images, as described in the input

prompts. To this end, human evaluators were engaged with

two distinct tasks (Fig. 7). Again, we presented evalua-

tors with 500 input-output pairs, garnering 1k responses. To

ensure the reliability of our findings, we considered only

those queries where the majority of evaluators reached a

consensus in their responses, ending up with 70% of the

500 queries.

Firstly, they were presented with two images and asked

to determine which image (if any) more accurately depicted

the objects mentioned in the prompt. Secondly, evaluators

were tasked with identifying which of the two images (if

any) more effectively captured the interactions between hu-

mans and objects, as described in the prompt.

The study’s findings were significant: there was a 1.4x

increase in the Kendall-τ correlation between GOA and hu-

man judgment for object faithfulness, compared to the best

existing text-to-image metric. Likewise, the correlation be-

tween RFS and human judgment on relationship accuracy

showcased a 1.5x improvement over the best existing text-

to-image metric. These results highlight the superior capa-

bility of GOA and RFS in aligning with human evaluators’

perceptions of object and relationship accuracy in generated

images.

3. StellarNet Architecture & Training Details

StellarNet architecture draws inspiration from various pre-

existing works in the personalized T2I generation space. As
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Table 5. Quantitative evaluation of StellarNet against popular SoTA using existing and introduced metrics on Stellar-H. In the

Main paper we evaluate all methods on our purposed metrics on Stellar-T Tab. 3. In this table we present results for the same evaluation

on Stellar-H. We can observe that the metrics are similar to the ones in Tab. 3. Our results highlight the similarity between the two datasets

and the benefit of using Stellar-T , where ground-truth object annotations allow one to evaluate object-centric metrics i.e., RFS and GOA.

Models

Metrics DreamBooth [13] ELITE∗ [16] Text. Inv. [4] StellarNet (Ours) Type

Aesth. (↑) 5.250 5.066 5.214 5.641

Img-to-ImgCLIPI (↑) 0.304 0.374 0.468 0.521

DreamSim (↓) 0.786 0.704 0.615 0.566

CLIPT (↑) 0.404 0.369 0.313 0.378

Text-to-Img

HPSv1 (↑) 0.198 0.193 0.189 0.204

HPSv2 (↑) 0.271 0.267 0.262 0.274

ImageReward (↑) -0.038 -0.409 -0.913 0.423

PickScore (↑) 0.211 0.205 0.198 0.213

APS (↑) 0.299 0.449 0.419 0.685

Personalized (Ours)IPS (↑) 0.246 0.368 0.299 0.622

SIS (↑) 0.228 0.342 0.273 0.564

explained in Sec. 5 of the Main paper, our method consists

of the Dynamic Textual Inversion (DTI) module and learn-

able LoRA offset weights that steer the UNet backbone of

the pre-trained model we build upon. An overview of the

architecture can be seen in Fig. 2 - Main.

Dynamic Textual Inversion. DTI deals with projecting

the input image from the pixel space to the textual word em-

bedding space. We call the result of this projection S
∗. For

our architecture, we provide the DTI module with masked

input images, where all the background pixels have been ze-

roed out. Visually, this can be seen on the left part of Fig. 2

- Main.

The module is versatile enough to be integrated with

multi-encoder text-to-image models such as SDXL [11]. In

this setup, there are two possible approaches: one option is

to provide the same word embedding S
∗ to all encoders. Al-

ternatively, we can generate distinct sets of embeddings S∗
i

tailored for each text encoder. Furthermore, these embed-

dings can either be derived from the same Image Encoder

but processed through different MLP mappers, or we can

opt for separate image encoders, each corresponding to an

individual text encoder. This modularity of DTI allows for

flexible and efficient integration with various text-to-image

model architectures.

Drawing inspiration from ELITE [16], our model con-

structs S
∗ as a series of embeddings, each derived using

a distinct image2text mapper for various layers of the im-

age encoder. These embeddings encapsulate varying levels

of detail. In practice, although multi-word embeddings are

learned, we primarily utilize the one associated with the fi-

nal layer of the image encoder during inference. This se-

lective use helps to isolate key identity features from higher

frequency details (e.g.,the background), thereby enhancing

the model’s editing capability.

Low Rank Adaptation Weight Offsets. Beyond employ-

ing DTI, we refine our model by fine-tuning the pre-trained

conditional UNet backbone to more effectively interpret the

newly formed S
∗ embeddings. However, in order to suc-

cessfully fine-tune the UNet, we would need a very large

amount of data and careful tuning of the training hyperpa-

rameters. Thus, for efficient and stable training, particu-

larly with large models like SDXL, we utilize Low Rand

Adaptation (LoRA [5]) weight offsets to prevent model col-

lapse. Moreover, these weight offsets open avenues for fu-

ture exploration, such as introducing an auxiliary parameter,

λ. This parameter can modulate the influence of the fine-

tuned weights, thereby offering a mechanism to balance be-

tween editability and accurate subject representation. Visu-

ally, this can be seen in the middle part of Fig. 2 - Main.

Loss. To complement the expectation for masked images

in the DTI module, we formulate and use a masked Mean

Square Error (MSE) loss function. This loss function is de-

signed to avoid penalizing the model for variations in back-

ground details compared to the input image. Instead, it fo-

cuses solely on the non-masked pixels, as determined by

the mask provided in the DTI module. The formula for this

masked MSE loss is as follows:

MSEmasked =
1

N

∑
MSE2D(I,O) · MASKbin (1)

Here, MSE2D represents the Mean Square Error, before

the final mean redaction, calculated in the latent space and
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Figure 5. Correlation heatmap among key introduced and ab-

lated metrics. Personalized metrics (bottom) ( ) have a small

correlation with Img-to-Img (top) and Text-to-Img (middle) met-

rics with a Pearson correlation of ρ = 0.06 and ρ = 0.25, which

suggests that they provide an additional dimension by which T2I

systems can be evaluated. This is in contrast to, Text-to-Img met-

rics ( ) that have an increased correlation (e.g., CLIPT and

HPSv2, with ρ = 0.6). Note also how the Text-to-Img metrics

have a high correlation with GOA but very little correlation with

RFS, indicating that they mostly assess the representation of the

objects in the image and not the interactions. Overall, our metrics

appear to capture several orthogonal dimensions (and crucial for

evaluating the output’s quality, per Main paper Fig. 1–right); that

can not be fully assessed with existing metrics.

formatted as a 2D array. MASKbin is the downsampled bi-

nary mask of the input image, where the background is as-

signed a zero value and the subject is indicated with a value

of 1. N denotes the total number of elements in the 2D ar-

ray. This formulation ensures that the loss calculation is ef-

fectively concentrated on the areas of interest—namely, the

subject of the image—thereby facilitating a more targeted

and accurate learning process.

Additionally, to constrain the information in the S
∗ em-

beddings, so that they manage to focus on the facial charac-

teristics of the input identities, instead of the high-frequency

details of the image, we add a regularization term for these

Figure 6. Instructions given to annotators for evaluating holis-

tically the quality of personalized T2I systems. These are the

instructions given to AMT users in order to assess the alignment

and predictability of our proposed metrics with human judgment,

in terms of finding the overall best generation. I.e., in the posed

question no fine-grained sub-questions are included (unlike those

asked in the experiment depicted in Fig. 7).

embeddings on the total training loss. As a result, the final

loss is calculated as follows:

Loss = MSEmasked + α ·REGS∗ (2)
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Figure 7. Instructions given to annotators for evaluating im-

ages based on object-centric context. These are the initial in-

structions given to users in Amazon Mechanical Turk (AMT) in

order to accurately assess the alignment of our proposed metrics

with human judgment on object-centric context-based evaluation.

Where α is a hyperparameter that controls the weight of

the regularization term REGS∗ in the overall loss function.

Visually, this can be seen on the right part of Fig. 2 - Main.

StellarNet. For StellarNet, we build on top of SDXL

(base only without refiner) and we use two CLIP image en-

coders matching the CLIP text encoders of SDXL. Each of

the MLPs mapping image to textual features has 2 layers

(an input and an output layer) with 1024 hidden dimensions

and input/output dimensions matching those of the CLIP

encoders. For fine-tuning the UNet, following the original

paper’s authors [5], we only train offsets for the attention

layers of the UNet using LoRA with rank= 4.

Table 6. Textual prompts used for training StellarNet. During

training for each image we randomly sample one of the prompts

below to train the system. These prompts are constructed to align

with the expected images from CelebAHQ [8].

a portrait photo of a S∗ person

a photo of a S∗ person

a photo of a S∗ person face

a cropped photo of a S∗ person

a cropped photo of a S∗ person face

a high quality photo of a S∗ person face

a good photo of a S∗ person face

a photo of a S∗ person face

Training Details. In all our experiments and results, we

set the auxiliary parameter λ to 1. StellarNet is trained on

the train set of CelebAHQ consisting of ∼24k images with

masks, for ∼23k steps with an effective batch size of 64
on 8 A100 GPUs. The regularization weight α is set to

0.01, the LoRA learning rate is set to 1 × 10−7 and the

DTI learning rate is set to 2 × 10−6. During training, we

randomly paired one image with one of the prompts in Tab.

6, which are constructed to align with the expected images

from CelebAHQ [8].

4. Failure Cases

StellarNet, like most current personalized T2I systems,

exhibits three primary failure cases that are noteworthy.

Firstly, the model tends to homogenize facial features when

generating multiple people in a single scene leading to im-

ages like those in Fig. 9 - middle left.

Secondly, the model demonstrates a challenge in decou-

pling variable characteristics from the subject in the input

image. For example, if the input image features a person

wearing glasses or a hat, the model often replicates these

accessories in the output, regardless of their relevance per

the prompt (Fig. 9 - middle).

Thirdly, while less pronounced, there is an indication of

social semantic bias originating from the underlying SDXL

model. In cases involving certain semantic contexts, such as

professions stereotypically associated with a specific gen-

der (e.g., nurse, cop), the model tends to generate identities

conforming to these social biases. Observing Fig. 9 (right

column), there is an instance where the system completely

changed the gender of the input image.

It is important to note, however, that these tendencies do

not manifest uniformly across generations, as depicted in

the bottom row of Fig. 9, where the model does not exhibit

these problems.

Lastly, we also note various edge cases for our system.

Notably, there are instances where the system fails to gener-

ate a human figure in the output, particularly in prompts in-
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(a) S* onto a Rimac at a foggy day (b) S* as a sumo fighter fighting a tiger (c) S* sitting on sunbed made of bronze

Figure 8. Extreme failure cases of StellarNet. This figure presents a few rare edge cases of our system. Fig. 8a hiding the subject’s

identity. Fig. 8b merging of semantics from the prompt. Fig. 8c inability to accurately follow confusing prompts.

volving certain objects like cars, as seen on the left of Fig. 8.

Another issue arises when the model confuses or mixes up

semantic objects from the prompt, leading to weird depic-

tions in the generated image (Fig. 8 - middle). Furthermore,

the system occasionally exhibits confusion in interpreting

poorly structured prompts, resulting in outputs that do not

align well with the intended request (Fig. 8 - right). These

edge cases, though not frequent, highlight areas where Stel-

larNet’s understanding and representation capabilities can

be further refined.

5. Miscellaneous

An additional figure, with more examples comparing Stel-

larNet with competing methods, can be found in Fig. 10.

Also, a visualization of the nouns in Stellar-H can be seen

in Fig. 2.

Note: All input images in the paper and this supplemen-

tary material (denoted as Original Image in the figures) are

from CelebAMask-HQ [8].
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